Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(15): 10464-10484, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578701

ABSTRACT

Mammalian cells release a heterogeneous array of extracellular vesicles (EVs) that contribute to intercellular communication by means of the cargo that they carry. To resolve EV heterogeneity and determine if cargo is partitioned into select EV populations, we developed a method named "EV Fingerprinting" that discerns distinct vesicle populations using dimensional reduction of multiparametric data collected by quantitative single-EV flow cytometry. EV populations were found to be discernible by a combination of membrane order and EV size, both of which were obtained through multiparametric analysis of fluorescent features from the lipophilic dye Di-8-ANEPPS incorporated into the lipid bilayer. Molecular perturbation of EV secretion and biogenesis through respective ablation of the small GTPase Rab27a and overexpression of the EV-associated tetraspanin CD63 revealed distinct and selective alterations in EV populations, as well as cargo distribution. While Rab27a disproportionately affects all small EV populations with high membrane order, the overexpression of CD63 selectively increased the production of one small EV population of intermediate membrane order. Multiplexing experiments subsequently revealed that EV cargos have a distinct, nonrandom distribution with CD63 and CD81 selectively partitioning into smaller vs larger EVs, respectively. These studies not only present a method to probe EV biogenesis but also reveal how the selective partitioning of cargo contributes to EV heterogeneity.


Subject(s)
Extracellular Vesicles , Animals , Flow Cytometry , Lipid Bilayers , Cell Communication , Mammals
2.
Nano Today ; 482023 02.
Article in English | MEDLINE | ID: mdl-36711067

ABSTRACT

Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.e., EV Click Chip) and reverse-transcription droplet digital PCR that quantifies 11 PCa-relevant mRNA in purified PCa-derived EVs. A Met score was computed for each plasma sample based on the expression of the 11-gene panel using the weighted Z score method. Under optimized conditions, the EV Click Chips outperformed the ultracentrifugation or precipitation method of purifying PCa-derived EVs from artificial plasma samples. Using PCa EV DSA, the Met score distinguished metastatic (n = 20) from localized PCa (n = 20) with an area under the receiver operating characteristic curve of 0.88 (95% CI:0.78-0.98). Furthermore, longitudinal analysis of three PCa patients showed the dynamics of the Met scores reflected clinical behavior even when disease was undetectable by imaging. Overall, a sensitive PCa EV DSA was developed to identify metastatic PCa and reveal dynamic disease states noninvasively. This assay may complement current imaging tools and blood-based tests for timely detection of metastatic progression that can improve care for PCa patients.

3.
Colloids Surf B Biointerfaces ; 218: 112728, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35969923

ABSTRACT

Nanomaterials are characterized by an extremely large surface-to-volume ratio. Extracellular Vesicles (EVs) - which have been recently recognized as the universal agent of intercellular communication, being involved in many physiological and pathological processes and interkingdom biochemical communication - are nanoparticles, but this key aspect has never been rationally addressed. Here we report the first attempt to quantify the membrane-to-lumen partition of proteins in EVs. A semi-quantitative model based on available well-established compositional and microstructural data is formulated. The model allows for the estimation of the overall protein content of an EV as well as of the partition between membrane (surface) associated and lumen (bulk) contained proteins as a function of the EV size and shape. It further identifies 180 nm as a switch diameter, below which EVs result composed of more membrane than luminal proteins. At larger diameters the partition is reversed, reaching predominance of luminal proteins (> 80 %) in large EVs (diameter > 800 nm). The model is successfully tested to analyze and describe a real preparation composed of subpopulations of small EVs (diameter < 200 nm), including exosomes and ectosomes, and large EVs including large oncosomes (diameter > 1000 nm) from human prostate cancer cells. These findings provide the basis for a better colloidal description of EV samples, might help to understand the stoichiometry of proteins in distinct EV sub-populations, and will improve the design and interpretation of experiments, including EV engineering and dosing in-vitro and in-vivo.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Cell Communication , Exosomes/metabolism , Extracellular Vesicles/chemistry , Humans , Male , Proteins/metabolism
4.
J Extracell Vesicles ; 9(1): 1764192, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32944167

ABSTRACT

Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, frequently called palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyse the palmitoyl-proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbour proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABCC4 as prostate cancer-specific palmitoyl-proteins abundant in both EV populations. Importantly, localization of the above proteins in EVs was reduced upon inhibition of palmitoylation in the producing cells. Our results suggest that this post-translational modification may play a role in the sorting of the EV-bound secretome and possibly enable selective detection of disease biomarkers.

5.
ACS Appl Mater Interfaces ; 11(15): 13973-13983, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30892008

ABSTRACT

Tumor-derived extracellular vesicles (EVs) present in bodily fluids are emerging liquid biopsy markers for non-invasive cancer diagnosis and treatment monitoring. Because the majority of EVs in circulation are not of tumor origin, it is critical to develop new platforms capable of enriching tumor-derived EVs from the blood. Herein, we introduce a biostructure-inspired NanoVilli Chip, capable of highly efficient and reproducible immunoaffinity capture of tumor-derived EVs from blood plasma samples. Anti-EpCAM-grafted silicon nanowire arrays were engineered to mimic the distinctive structures of intestinal microvilli, dramatically increasing surface area and enhancing tumor-derived EV capture. RNA in the captured EVs can be recovered for downstream molecular analyses by reverse transcription Droplet Digital PCR. We demonstrate that this assay can be applied to monitor the dynamic changes of ROS1 rearrangements and epidermal growth factor receptor T790M mutations that predict treatment responses and disease progression in non-small cell lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Extracellular Vesicles/metabolism , Lung Neoplasms/pathology , Nanowires/chemistry , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Adult , Aged , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Epithelial Cell Adhesion Molecule/immunology , Female , Gene Rearrangement , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , Silicon/chemistry
6.
Proteomics ; 19(8): e1800167, 2019 04.
Article in English | MEDLINE | ID: mdl-30793499

ABSTRACT

Extracellular vesicles (EVs) are membrane-enclosed particles that are released by virtually all cells from all living organisms. EVs shuttle biologically active cargo including protein, RNA, and DNA between cells. When shed by cancer cells, they function as potent intercellular messangers with important functional consequences. Cells produce a diverse spectrum of EVs, spanning from small vesicles of 40-150 nm in diameter, to large vesicles up to 10 µm in diameter. While this diversity was initially considered to be purely based on size, it is becoming evident that different classes of EVs, and different populations within one EV class may harbor distinct molecular cargo and play specific functions. Furthermore, there are considerable cell type-dependent differences in the cargo and function of shed EVs. This review focuses on the most recent proteomic studies that have attempted to capture the EV heterogeneity by directly comparing the protein composition of different EV classes and EV populations derived from the same cell source. Recent studies comparing protein composition of the same EV class(es) derived from different cell types are also summarized. Emerging approaches to study EV heterogeneity and their important implications for future studies are also discussed.


Subject(s)
Extracellular Vesicles/metabolism , Proteomics/methods , Exosomes/metabolism , Humans
7.
J Extracell Vesicles ; 7(1): 1505403, 2018.
Article in English | MEDLINE | ID: mdl-30108686

ABSTRACT

Cancer-derived extracellular vesicles (EVs) are membrane-enclosed structures of highly variable size. EVs contain a myriad of substances (proteins, lipid, RNA, DNA) that provide a reservoir of circulating molecules, thus offering a good source of biomarkers. We demonstrate here that large EVs (L-EV) (large oncosomes) isolated from prostate cancer (PCa) cells and patient plasma are an EV population that is enriched in chromosomal DNA, including large fragments up to 2 million base pair long. While L-EVs and small EVs (S-EV) (exosomes) isolated from the same cells contained similar amounts of protein, the DNA was more abundant in L-EV, despite S-EVs being more numerous. Consistent with in vitro observations, the abundance of DNA in L-EV obtained from PCa patient plasma was variable but frequently high. Conversely, negligible amounts of DNA were present in the S-EVs from the same patients. Controlled experimental conditions, with spike-ins of L-EVs and S-EVs from cancer cells in human plasma from healthy subjects, showed that circulating DNA is almost exclusively enclosed in L-EVs. Whole genome sequencing revealed that the DNA in L-EVs reflects genetic aberrations of the cell of origin, including copy number variations of genes frequently altered in metastatic PCa (i.e. MYC, AKT1, PTK2, KLF10 and PTEN). These results demonstrate that L-EV-derived DNA reflects the genomic make-up of the tumour of origin. They also support the conclusion that L-EVs are the fraction of plasma EVs with DNA content that should be interrogated for tumour-derived genomic alterations.

8.
Mol Cell Neurosci ; 77: 76-86, 2016 12.
Article in English | MEDLINE | ID: mdl-27989734

ABSTRACT

Huntington's disease (HD) affects both neurons and astrocytes. To target the latter and to ensure brain-wide transgene expression, adeno-associated viral (AAV) vectors can be administered intravenously, as AAV vectors cross the blood-brain barrier (BBB) and enable preferential transduction of astrocytes due to their close association with blood vessels. However, there is a possibility that the subclass of GFAP-expressing astrocytes performs a distinct role in HD and reacts differently to therapeutic measures than the rest of the astrocytes. The gfaABC1D promoter allows specific targeting of the GFAP-expressing astrocytes (~25% of S100ß-expressing astrocytes). We have examined the expression of three different transgenes (GCaMP6f, Kir4.1 and GLT1) and tested the effects of the AAV serotypes 9 and rh8. The AAV vectors were injected into the tail vein of 1-year-old homozygous Z-Q175-KI HD mice and their wild-type (WT) littermates. At this age, HD mice exhibit motor symptoms, including pronounced hypokinesia and circling behaviour. The expression times ranged from 3 to 6weeks. The target cell population was defined as the cells expressing S100ß in addition to GFAP. Viewfields in the dorsal striatum and the overlaying cortex were evaluated and the transduction rate was defined as the percentage of target cells that expressed the reporter transgene (enhanced green fluorescent protein, EGFP, or Tomato). In all cases, the transduction rate was higher in the cortex than in the striatum. AAV9 was more efficient than AAVrh8. One of the injected constructs (AAV9-gfaABC1D-GLT1-Tomato) was tested for the first time. GLT1, the principal astrocytic glutamate transporter, is deficient in HD and therefore considered as a potential target for gene therapy. At a dose of 1.86×1011 vector genome (vg) per animal, the fraction of GLT1-Tomato+ cells in the striatum and the cortex amounted to 30% and 49%, respectively. In individual Tomato+ HD astrocytes, treatment with the GLT1 vector increased the level of GLT1 immunofluorescence by 21% compared to the HD control. The described approach offers new and interesting opportunities to examine the pathophysiological consequences of brain-wide transgene expression in a specific astrocyte subpopulation.


Subject(s)
Astrocytes/metabolism , Dependovirus/genetics , Genetic Therapy/methods , Glial Fibrillary Acidic Protein/metabolism , Huntington Disease/therapy , Animals , Corpus Striatum/metabolism , Excitatory Amino Acid Transporter 2/genetics , Excitatory Amino Acid Transporter 2/metabolism , Genetic Vectors/genetics , Glial Fibrillary Acidic Protein/genetics , Male , Mice , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Promoter Regions, Genetic , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , Transgenes
9.
J Neurosci ; 36(18): 4959-75, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27147650

ABSTRACT

UNLABELLED: This study evaluates single-cell indicators of glutamate transport in sulforhodamine 101-positive astrocytes of Q175 mice, a knock-in model of Huntington's disease (HD). Transport-related fluorescent ratio signals obtained with sodium-binding benzofuran isophtalate (SBFI) AM from unperturbed or voltage-clamped astrocytes and respective glutamate transporter currents (GTCs) were induced by photolytic or synaptic glutamate release and isolated pharmacologically. The HD-induced deficit ranged from -27% (GTC maximum at -100 mV in Ba(2+)) to -41% (sodium transients in astrocytes after loading SBFI-AM). Our specific aim was to clarify the mechanism(s) by which Kir4.1 channels can influence glutamate transport, as determined by either Na(+) imaging or transport-associated electrical signals. A decrease of Kir4.1 conductance was mimicked with Ba(2+) (200 µm), and an increase of Kir4.1 expression was obtained by intravenous administration of AAV9-gfaABC1D-Kir4.1-EGFP. The decrease of Kir4.1 conductance reduced the sodium transients but increased the amplitudes of somatic GTCs. Accordingly, after genetic upregulation of Kir4.1, somatic GTCs were found to be decreased. In individual cells, there was a negative correlation between Kir4.1 currents and GTCs. The relative effect of the Kir4.1 conductance was higher in the astrocyte periphery. These and other results suggest that the Kir4.1 conductance affects glutamate transporter activity in a dual manner: (1) by providing the driving force (voltage dependency of the transport itself) and (2) by limiting the lateral charge transfer (thereby reducing the interference with other electrogenic transporter functions). This leads to the testable prediction that restoring the high conductance state of passive astrocytes will not only normalize glutamate uptake but also restore other astrocytic transporter activities afflicted with HD. SIGNIFICANCE STATEMENT: Insufficiency of astrocytic glutamate uptake is a major element in the pathophysiology of neurodegenerative diseases. Considering the heterogeneity of astrocytes and their differential susceptibility to therapeutic interventions, it becomes necessary to evaluate the determinants of transport activity in individual astroglial cells. We have examined intracellular Na(+) transients and glutamate transporter currents as the most telling indicators of glutamate clearance after synaptic or photolytic release of glutamate in striatal slices. The results show that, in Huntington's disease, glutamate uptake activity critically depends on Kir4.1. These channels enable the high conductance state of the astrocytic plasma membrane, which ensures the driving force for glutamate transport and dumps the transport-associated depolarization along the astrocyte processes. This has significant implications for developing therapeutic targets.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Huntington Disease/metabolism , Neostriatum/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Amino Acid Transport System X-AG/metabolism , Animals , Astrocytes/drug effects , Benzofurans/pharmacology , Excitatory Amino Acid Transporter 2/genetics , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Postsynaptic Potentials/drug effects , Gap Junctions/drug effects , Gap Junctions/metabolism , Gene Knock-In Techniques , Glial Fibrillary Acidic Protein/metabolism , Mice , Neostriatum/cytology , Patch-Clamp Techniques , Phthalic Acids/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
10.
Article in English | MEDLINE | ID: mdl-25482476

ABSTRACT

INTRODUCTION: Apoptosis is involved in pathological cell death of a wide range of human diseases. One of the most important biochemical markers of apoptosis is activation of caspase-3. Ability to detect caspase-3 activation early in the pathological process is important for determining the timing for interfering with apoptosis initiation and prevention of cell damage. Techniques allowing detection of caspase-3 activity at a single cell level show increased sensitivity, compared to biochemical assays; therefore, we developed a novel bicistronic caspase-3 sensor vector enabling detection of caspase-3 activity in individual cells. METHODS: We employed green fluorescent protein (GFP) as a reporter for caspase-3 activation in our constructs and assessed the functionality of the generated constructs in transiently transfected Neuro2A and HEK293 cells under basal conditions and following application of okadaic acid (OA) or staurosporine (STS) to induce apoptosis. To ensure responsiveness of the new sensor vector to active caspase-3, we co-transfected the sensor with plasmid(s) overexpressing active caspase-3 and quantified GFP fluorescence using a plate reader. RESULTS: We observed an increase in GFP expression in cells transfected with the new bicistronic caspase-3 sensor in response to both OA and STS. We also showed a significant increase in GFP fluorescence intensity in cells co-expressing the sensor with the plasmid(s) encoding active caspase-3. DISCUSSION: We generated a novel bicistronic caspase-3 sensor vector which relies on a transcription factor/response element system. The obtained sensor combines high sensitivity of the single cell level detection with the possibility of automated quantification.


Subject(s)
Biosensing Techniques/methods , Caspase 3/metabolism , Enzyme Activation/physiology , Genes, Reporter/physiology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Caspase 3/genetics , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Fluorescence , Gene Expression Regulation/drug effects , Green Fluorescent Proteins , Humans , Okadaic Acid/pharmacology , Staurosporine/pharmacology
11.
Neurol Res Int ; 2012: 358370, 2012.
Article in English | MEDLINE | ID: mdl-22288011

ABSTRACT

Huntington's disease (HD) is caused by a dominant mutation that results in an unstable expansion of a CAG repeat in the huntingtin gene leading to a toxic gain of function in huntingtin protein which causes massive neurodegeneration mainly in the striatum and clinical symptoms associated with the disease. Since the mutation has multiple effects in the cell and the precise mechanism of the disease remains to be elucidated, gene therapy approaches have been developed that intervene in different aspects of the condition. These approaches include increasing expression of growth factors, decreasing levels of mutant huntingtin, and restoring cell metabolism and transcriptional balance. The aim of this paper is to outline the nucleic acid-based therapeutic strategies that have been tested to date.

SELECTION OF CITATIONS
SEARCH DETAIL
...